If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-17=0
a = 2; b = 2; c = -17;
Δ = b2-4ac
Δ = 22-4·2·(-17)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{35}}{2*2}=\frac{-2-2\sqrt{35}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{35}}{2*2}=\frac{-2+2\sqrt{35}}{4} $
| 6x+0+2x=42 | | 5+3b-12=13 | | 7x─12=2x+13 | | 6.5x-10=0 | | -4(-3+4x)-5=-73 | | 12a^2=20a | | 2(13x)=75 | | 49x+18=49x+22 | | 4.75k+6=-k+0.33 | | 25+475n=725 | | x+4.7=0 | | 3/4n=-13/4n-11 | | (4x-1)+(2x-9)+28=180 | | 3x-7=5x=3, | | b/5+6=15 | | 2x–6=5x+4 | | 7x^2+7x-17=0 | | 5(x)+25=95 | | (8x-11)+(2x+6)+5x=180 | | |x|/3=15 | | 2/3x-6=4/3x+2 | | (-5x)x-4=3x | | X+9x-4=50 | | 102.44+36.44x=11 | | -8x+4.7=0 | | 8x+116=116 | | -1/2+8=3/4x-2 | | v/5=20 | | 4n=336 | | 2x-10=-5(x-5) | | -3+7x=4x+-9 | | 25+2x^2=3x^2 |